Table 1. Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$

$\mathrm{N} 1-\mathrm{C} 2$	$1.323(3)$	$\mathrm{N} 3-\mathrm{C} 3$	$1.468(3)$
$\mathrm{N} 1-\mathrm{C} 6$	$1.332(3)$	$\mathrm{N} 3-\mathrm{C} 4$	$1.381(3)$
$\mathrm{C} 2-\mathrm{N} 2$	$1.319(3)$	$\mathrm{C} 4-\mathrm{O} 4$	$1.210(3)$
$\mathrm{C} 2-\mathrm{N} 3$	$1.376(3)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.469(3)$
$\mathrm{N} 2-\mathrm{C} 21$	$1.447(3)$	$\mathrm{C} 5-\mathrm{N} 5$	$1.316(3)$
$\mathrm{C} 21-\mathrm{C} 22$	$1.497(3)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.444(3)$
$\mathrm{C} 22-\mathrm{O} 21$	$1.207(3)$	$\mathrm{N} 5-\mathrm{O} 5$	$1.296(2)$
$\mathrm{C} 22-\mathrm{O} 22$	$1.292(3)$	$\mathrm{C} 6-\mathrm{N} 6$	$1.311(3)$
$\mathrm{C} 2-\mathrm{N} 2-\mathrm{C} 21-\mathrm{C} 22$	$-81.3(3)$	$\mathrm{C} 6-\mathrm{C} 5-\mathrm{N} 5-\mathrm{O} 5$	$0.0(4)$

Table 2. Hydrogen-bonding geometry $\left(\AA^{\circ},^{\circ}\right)$

$D — \mathrm{H} \cdots \mathrm{A}$	D-H	H \cdots A	D. ${ }^{\text {d }}$	D-H. ${ }^{\text {c }}$
$\mathrm{O} 1-\mathrm{H} 1 \mathrm{~A} \cdots \mathrm{O} 2$	0.82	1.97	2.779 (3)	169
$\mathrm{O} 1-\mathrm{H} 1 \mathrm{~B} \cdot . \mathrm{O} 21^{\text {i }}$	0.82	1.99	2.784 (3)	163
$\mathrm{N} 2-\mathrm{H} 2 \cdots \mathrm{O} 1^{\text {ii }}$	0.86	2.09	2.862 (3)	149
$\mathrm{O} 2-\mathrm{H} 2 \mathrm{~A} \cdots \mathrm{O} 4^{\text {iii }}$	0.82	2.39	2.901 (3)	121
O2-H2A $\cdots \mathrm{N} 5^{\text {iii }}$	0.82	2.46	3.228 (3)	158
$\mathrm{O} 2-\mathrm{H} 2 \mathrm{~B} \cdot \cdots \mathrm{O} 1^{\text {iv }}$	0.82	2.10	2.908 (3)	170
N6-H6A . . O 2	0.86	2.07	2.914 (3)	169
N6-H6B..O5	0.86	2.02	2.645 (3)	129
N6-H6B $\cdots \mathrm{O} 4^{\text {iii }}$	0.86	2.50	2.900 (3)	109
O22-H22. ${ }^{\text {O }}{ }^{\text {v }}$	1.10	1.44	2.491 (3)	155
O22-H22 . ${ }^{\text {N }}{ }^{\text {v }}$	1.10	2.08	2.902 (3)	129

Symmetry codes: (i) $x-\frac{1}{2}, y, \frac{1}{2}-z$; (ii) $\frac{1}{2}+x,-\frac{1}{2}-y, 1-z$; (iii) $\frac{3}{2}-x,-y, z-\frac{1}{2}$; (iv) $\frac{1}{2}+x, y, \frac{1}{2}-z$; (v) $\frac{3}{2}-x, y-\frac{1}{2}, z$.

H atoms were placed in calculated positions, except for H 22 , which was located in a $\Delta \rho$ map, $1.10 \AA$ from O 22 , and held in that position. They were treated as riding atoms in the refinement ($\mathrm{C}-\mathrm{H} 0.93-0.98, \mathrm{~N}-\mathrm{H} \mathrm{0.86}$, and $\mathrm{O}-\mathrm{H} 0.82$ and $1.10 \AA$).
Data collection: CAD-4-PC (Enraf-Nonius, 1992). Cell refinement: SET4 and CELDIM in CAD-4-PC. Data reduction: DATRD 2 in NRCVAX 94 (Gabe, Le Page, Charland, Lee \& White, 1989). Program(s) used to solve structure: SOLVER in NRCVAX94. Program(s) used to refine structure: NRCVAX94 and SHELXL 93 (Sheldrick, 1993). Molecular graphics: NRCVAX94, PLATON and PLUTON (Spek, 1995b). Software used to prepare material for publication: NRCVAX94, SHELXL93 and WordPerfect macro PREPCIF.

GF thanks NSERC (Canada) for Research Grants.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: AB1473). Services for accessing these data are described at the back of the journal.

References

Enraf-Nonius (1992). CAD-4-PC. Version 1.1. Enraf-Nonius, Delft, The Netherlands.
Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. \& Whitc, P. S. (1989). J. Appl. Cryst. 22, 384-387.

Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Low, J. N., Scrimgeour, S. N., Egglishaw, C., Howie, R. A., MorenoCarretero, M. N. \& Hueso-Urena, F. (1994). Acta Cryst. C50, 13291333.

Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Spek, A. L. (1995a). PLATON. Molecular Geometry Program. Version of October 1995. University of Utrecht, The Netherlands.
Spek, A. L. (1995b). PLUTON. Molecular Graphics Program. Version of July 1995. University of Utrecht, The Netherlands.

Acta Cryst. (1997). C53, 892-895
trans- and cis-S—C-C-S Conformations in 5 -($2,2^{\prime}$-Dithien- 5 -yl)-2 $\mathbf{2}^{\prime}$-deoxyuridine

J. Wouters, ${ }^{a}$ I. Creuven, ${ }^{a}$ B. Norberg, ${ }^{a}$ G. Evrard, ${ }^{a}$ F. Durant, ${ }^{a}$ A. van Aerschot ${ }^{b}$ and P. Herdewinn ${ }^{b}$
${ }^{a}$ Laboratoire de Chimie Moleculaire Structurale, Facultes N.-D. de la Paix, 61 Rue de Bruxelles, B-5000 Namur, Belgium, and ${ }^{b}$ Laboratory of Medicinal Chemistry, Riga Institute for Medical Research, Katholieke Universiteit
Leuven, B-3000 Leuven, Belgium. E-mail: wouters@scf. fundp.ac.be
(Received 9 September 1996; accepted 12 February 1997)

Abstract

The title compound, $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}_{2}$, adopts a transoidcisoid disordered crystal structure of the terminal thienyl group at room temperature, with occupancies of 0.55 and 0.45 . The structure was solved by direct methods and refined by least-squares calculations to a final R of 0.048 . Molecular cohesion is stabilized by hydrogen bonding involving the two hydroxyl groups of the sugar moiety and the uridine ring.

Comment

As part of our attempts to identify antiherpes agents by rational drug-design approaches, the structures of a series of deoxyuridine analogues have been characterized (Creuven et al., 1996; Olivier et al., 1994, and references therein). In this contribution, we present the crystal structure of 5-($2,2^{\prime}$-dithien-5-yl)-2'-deoxyuridine, (I), a compound that shows moderate activity against herpes simplex virus type 1 (Luyten et al., 1995).

(I)

The molecular structure with the atom-numbering scheme is given in Fig. 1. The observed geometry corresponds to standard values (Allen et al., 1987) and is similar to that of previously reported structures for analogues of 5 -substituted 2^{\prime}-deoxyuridines (Olivier et al., 1994; Creuven et al., 1996).

Fig. 1. Molecular structure and conformation (note the disorderd terminal thienyl ring) of the title compound. Displacement ellipsoids, representing non- H atoms, are drawn at the 50% probability level. The atom-numbering scheme used in the paper is shown.

Two alternative conformations of the terminal thienyl ring (numbered C90-C93, S94 and C90, S91', C92 ${ }^{\prime}$ C94') were refined in such a way that, in the final model, the title compound adopts a transoid-cisoid disordered terminal thienyl group with occupancies of 0.55 and 0.45 . While the majority of structures reported for polythiophenes (di-, ter-, quater-, hexathienyls) are planar with a transoid conformation (Visser, Heeres, Wolters \& Vos, 1968; Pelletier \& Brisse, 1994; Herrema, Wildeman, van Bolhuis \& Hadziioannou, 1994; Hotta \& Waragai, 1991; Bien, Kapon, Gronowitz \& Hornfeldt, 1989; Aleman et al., 1993), several cases of cisoid-transoid disordered structures have also been reported [e.g. tetrabutylhexathione ($0.60: 0.40$) by Liao, Benz, LeGoff \& Kanatzidis (1994); dithienyl (0.85:0.15) by Chaloner, Gunatunga \& Hitchcock (1994); bithio-phene- 5 -carbaldehyde ($0.80: 0.20$) by Armes, Chaloner, Hitchcock \& Simmons (1994)].

The planar thienyl rings (r.m.s. deviation from the best plane through the atoms is $0.003,0.018$ and $0.016 \AA$ for rings A, B and C, respectively, with a maximum deviation of 0.003 for $\mathrm{C} 2,0.031$ for C 90 and $0.022 \AA$ for $\mathrm{S} 91^{\prime} ; A=$ thienyl ring $\mathrm{S} 1, \mathrm{C} 1-\mathrm{C} 4 ; B=\mathrm{C} 90-\mathrm{C} 93$, S94; $C=$ C90, S91', C92 $^{\prime}$-C94') adopt a quasiplanar conformation, the torsion angle around the thienyl interring C1-C90 bond being close to 0 or 180° (Table 1). This planar entity is slightly tilted versus the planar (r.m.s. deviation from the best plane through the atoms of the ring $=0.003 \AA$ with a maximum deviation of $0.055 \AA$ for C 7) uracil ring as the $\mathrm{S} 1-\mathrm{C} 4-\mathrm{C} 5-$ C6 torsion angle is $25.3(4)^{\circ}$. The consequence for the internal geometry is that electronic delocalization is marked between the dithienyl rings $[\mathrm{Cl}-\mathrm{C} 90=$ $1.441(4) \AA$] but not between the uracyl and thienyl rings $\left[\mathrm{C} 4-\mathrm{C} 5=1.468\right.$ (4) \AA; overall $\mathrm{C}_{s p^{2}}-\mathrm{C}_{s p^{2}}$ single bond $=$ 1.460 (15) A (Allen et al., 1987)].

The uracyl ring is perpendicular to the deoxyribose group [C7-N2-C9-C10 $\left.=86.2(3)^{\circ}\right]$. However, the
orientation of the sugar moiety versus the uracil ring is highly variable when compared with similar structures (C7-N2-C9-C10 ranging from 80 to 140°; Creuven et al., 1996).

The S1 atom is located in the vicinity of the carbonyl group of the uracil ring, resulting from an intramolecular interaction between the S and O atoms [$\mathrm{S} 1 \cdots \mathrm{Ol}$ 2.949 (3) \AA, shorter than the sum of the contact radii of $S(1.80 \AA)$ and $\mathrm{O}(1.52 \AA)$ (Bondi, 1964)]. A similar intramolecular interaction has already been observed in analogues (Creuven et al., 1996). Interestingly, the cis

Fig. 2. Crystal-packing diagram (dotted lines indicate hydrogen-bond interactions; only the main component of the disordered dithienyl group is presented; H atoms are omitted). (a) View perpendicular to $a c,(b)$ view perpendicular to $a b$.
coplanar conformation of the dithienyl moiety places the two S atoms of those rings in close proximity as the $\mathrm{S} 1 \cdots \mathrm{~S} 94$ distance [3.313 (5) \AA] is indicative of an intramolecular contact.

Molecular cohesion (Fig. 2) is ensured by intermolecular hydrogen-bond interactions involving the two hydroxy groups and an N atom of the deoxyuridine moiety. In particular, molecules are connected in the ac plane [Fig. 2(a)] by a network of hydrogen bonds between O5 and O4, the two hydroxyl groups of the deoxyribose moiety: $\mathrm{O} 4 \cdots \mathrm{Ol}^{\mathrm{i}}=2.716$ (3) \AA, $\mathrm{O} 4-\mathrm{H} 4 \cdots \mathrm{Ol}^{\mathrm{i}}=178^{\circ} ; \mathrm{O} 5 \cdots \mathrm{O} 4^{\mathrm{ii}}=2.720(3) \AA$, O5H5 $\cdots \mathrm{O}^{\mathrm{ii}}=180^{\circ}$; symmetry codes: (i) $-\frac{1}{2}+x, \frac{1}{2}-y$, $-z$; (ii) $x, y, z+1$. A second network of hydrogen bonds links the molecules in the $a b$ plane [Fig. 2(b)] via the O 5 hydroxyl group and Nl atom of the uracil ring: $\mathrm{N} 1 \cdots \mathrm{O} 5^{\mathrm{iii}}=2.891(3) \AA, \mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{O} 5^{\mathrm{iii}}=178^{\circ}$; symmetry code: (iii) $\frac{1}{2}+x, \frac{1}{2}-y,-z$. The O 2 atom does not form hydrogen bonds. This has an indirect consequence on the internal geometry of the molecule: the O1-C6 bond length [1.234(4) A] is significantly longer than the $\mathrm{O} 2-\mathrm{C} 7$ bond $[1.213$ (4) \AA]. The $\mathrm{N}-\mathrm{C}(\mathrm{O})$ group however is not affected as N1-C6 = 1.374 (4) A and $\mathrm{N} 1-\mathrm{C} 7=1.375(4) \AA$. Crystal packing is also characterized by a stacked arrangement of the coplanar ur-acyl-dithienyl moiety of the molecules leading to short intermolecular ring interactions with centroid (Cg) distances of $3.5-4.0 \AA[\mathrm{Cg}(\mathrm{I})-\mathrm{Cg}(\mathrm{II})=3.76 \AA ; \alpha=3.2$, $\beta=23.9, \gamma=22.2^{\circ}$ (Spek, 1990); $A=$ thienyl ring, S 1 , $\mathrm{C} 1-\mathrm{C} 4 ; B=$ thienyl ring, $\mathrm{C} 90-\mathrm{C} 93, \mathrm{~S} 94]$.

Experimental

The compound was synthesized according to Luyten et al. (1995).

Crystal data

$\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}_{2}$
$M_{r}=392.42$
Orthorhombic
$P 2_{1} 2_{1} 2_{1}$
$a=14.580(2) \AA$
$b=18.5345(10) \AA$
$c=6.44770(10) \AA$
$V=1742.4(3) \AA^{3}$
$Z=4$
$D_{x}=1.496 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Enraf-Nonius CAD-4 diffractometer
$\theta / 2 \theta$ scans
Absorption correction: none
3268 measured reflections
2864 independent reflections
2695 reflections with
$I>2 \sigma(I)$
$\mathrm{Cu} K \alpha$ radiation
$\lambda=1.5418 \AA$
Cell parameters from 25 reflections
$\theta=40-45^{\circ}$
$\mu=3.063 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Needle
$0.15 \times 0.07 \times 0.07 \mathrm{~mm}$
Yellow
$R_{\text {int }}=0.0134$
$\theta_{\text {max }}=71.71^{\circ}$
$h=0 \rightarrow 17$
$k=-22 \rightarrow 19$
$l=0 \rightarrow 7$
3 standard reflections frequency: 60 min intensity decay: none

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.0461$
$w R\left(F^{2}\right)=0.1160$
$S=1.065$
2864 reflections
268 parameters
H atoms riding
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0722 P)^{2}\right]$ where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.093$
$\Delta \rho_{\text {max }}=0.466 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.314 \mathrm{e}^{-3}$

Extinction correction: SHELXL93 (Sheldrick, 1993)

Extinction coefficient: 0.0034 (4)

Scattering factors from International Tables for Crystallography (Vol. C)
Absolute configuration: Flack (1983)
Flack parameter $=-0.01(2)$

Table 1. Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$

S1-C4	1.723 (3)	C5-C8	1.340 (4)
Sl-Cl	1.735 (3)	C5-C6	1.464 (4)
$\mathrm{Cl}-\mathrm{C} 2$	1.364 (4)	C6-OI	1.234 (3)
$\mathrm{Cl}-\mathrm{C} 90$	1.441 (4)	C6-N1	1.374 (4)
$\mathrm{C} 2-\mathrm{C} 3$	1.397 (4)	$\mathrm{N} 1-\mathrm{C} 7$	1.375 (4)
C3-C. 4	1.361 (4)	C7-O2	1.213 (4)
C4-C5	1.468 (4)	C7-N2	1.381 (4)
$\mathrm{C} 90-\mathrm{C} 94^{\prime}$	1.357 (14)	N2-C8	1.370 (4)
C90-C91	1.398 (12)	N2-C9	1.485 (4)
C90-S94	1.67 .3 (4)	C9-03	1.414 (4)
C90-S91 ${ }^{\prime}$	1.703 (3)	C9-C10	1.520 (4)
C91-C92	1.40(2)	C10-C11	1.518 (4)
C92-C93	1.37 (2)	C11-O4	1.421 (3)
C93-S94	1.72 (2)	C11-C12	1.517 (4)
S91'-C92'	1.72 (2)	C12--03	1.452 (3)
C92 ${ }^{\prime}$ - $\mathrm{C} 93^{\prime}$	1.363 (14)	C12-C13	1.512 (4)
C93 ${ }^{\prime}$ - $994{ }^{\prime}$	1.42 (2)	C13-05	1.428 (4)
C4-Sl-Cl	92.2 (1)	C6-C5-C4	121.0 (3)
$\mathrm{C} 2-\mathrm{Cl}-\mathrm{C} 90$	128.3 (3)	$\mathrm{Ol}-\mathrm{C} 6-\mathrm{N} 1$	120.8 (3)
$\mathrm{C} 2-\mathrm{Cl}-\mathrm{Sl}$	110.1 (2)	$\mathrm{Ol}-\mathrm{C} 6-\mathrm{C} 5$	124.6 (3)
$\mathrm{C} 90-\mathrm{Cl}-\mathrm{S} 1$	121.6 (2)	$\mathrm{N} 1-\mathrm{C} 6-\mathrm{C} 5$	114.7 (3)
$\mathrm{Cl}-\mathrm{C} 2-\mathrm{C} 3$	113.5 (3)	$\mathrm{C} 6-\mathrm{N},-\mathrm{C} 7$	127.5 (2)
C4. $\mathrm{C} 3-\mathrm{C} 2$	113.9 (3)	$\mathrm{O} 2-\mathrm{C} 7-\mathrm{N} 1$	123.2 (3)
C3-C4-C5	124.9 (3)	$\mathrm{O} 2-\mathrm{C} 7-\mathrm{N} 2$	122.6 (3)
C3-C4-S1	110.4 (2)	$\mathrm{N} 1-\mathrm{C} 7-\mathrm{N} 2$	114.2 (3)
C5-C4-SI	124.6 (2)	$\mathrm{C} 8-\mathrm{N} 2-\mathrm{C} 7$	121.3 (2)
C94 - $\mathrm{C} 90-\mathrm{Cl}$	128.2 (8)	$\mathrm{C} 8-\mathrm{N} 2-\mathrm{C} 9$	122.0 (2)
C91-C90-C1	125.5 (7)	$\mathrm{C} 7-\mathrm{N} 2-\mathrm{C} 9$	116.6 (3)
C91-C90-S94	109.4 (6)	$\mathrm{C} 5-\mathrm{C} 8-\mathrm{N} 2$	123.7 (3)
C1-C90-S94	124.9 (3)	$\mathrm{O} 3-\mathrm{C} 9-\mathrm{N} 2$	107.8 (3)
C94'-C90-S91'	111.6 (8)	$\mathrm{O} 3-\mathrm{C} 9-\mathrm{C} 10$	107.1 (2)
C1-C90-S91'	120.2 (2)	$\mathrm{N} 2-\mathrm{C} 9-\mathrm{C} 10$	113.6 (2)
C90-C91-C92	112.9 (14)	$\mathrm{C} 11-\mathrm{C} 10-\mathrm{C} 9$	102.8 (2)
C93-C92-C91	114 (2)	O4-C11-C12	112.3 (2)
C92-C93-S94	109 (2)	O4- $\mathrm{C} 11-\mathrm{Cl0}$	111.4 (2)
C90-S94-C93	94.7 (9)	$\mathrm{C} 12-\mathrm{Cl1-C10}$	101.9 (2)
C90-S91'-C92'	92.2 (7)	$\mathrm{O} 3-\mathrm{C} 12-\mathrm{Cl} 3$	109.7 (2)
C93'-C92'-S91'	110.6 (16)	$\mathrm{O} 3-\mathrm{C} 12-\mathrm{Cl1}$	104.4 (2)
C92 - C93'-C94'	112.9 (17)	C13-C12-C11	117.1 (2)
C90-C94 - ${ }^{\text {C93 }}$	112.6(14)	$\mathrm{O}-\mathrm{Cl} 3-\mathrm{Cl} 2$	110.2 (2)
C8-C5-C6	117.6 (3)	C9-03-C12	109.9 (2)
C8-C5-C4	121.3 (3)		
$\mathrm{S} 1-\mathrm{Cl}-\mathrm{C} 90-\mathrm{S} 91^{\prime}$	174.4 (2)	$\mathrm{C} 7-\mathrm{N} 2-\mathrm{C} 9-\mathrm{O} 3$	-155.2(2)
S1-Cl-C90-S94	-4.0 (5)	C7-N2-C9-C10	86.2 (3)
S1-C1-C90-C94'	-8.8(1.2)	C9-C10-C11-O4	154.9 (2)
$\mathrm{S} 1-\mathrm{Cl}-\mathrm{C} 90-\mathrm{C} 91$	-179.2 (8)	$\mathrm{C} 10-\mathrm{Cl1-C12-C13}$	-156.7(2)
S1-C4-C5-C6	25.3 (4)	$\mathrm{Cl1}-\mathrm{Cl2}-\mathrm{Cl} 3-\mathrm{O}$	49.4 (3)

The cell parameters were refined from a list of 25 well centred reflections. Data were collected at room temperature on a CAD-4 diffractometer using Cu radiation. Data reduction included correction for background, decay, Lorentz and polarization factors, but not for absorption effects (an attempt to correct for absorption based on ψ scans was unsuccessful). The structure was solved by direct methods, resulting in reliable positions for all non- H atoms of the main disordered
component. The initial model was refined by least-squares techniques. A disordered component was observed for the terminal thienyl group. Occupancy of both parts refined to 0.55 and 0.45 and was fixed at these values for further refinement. Non-H atoms were refined with anisotropic displacement parameters. H atoms potentially involved in hydrogen bonds (i.e. on atoms O 4 and O5) were located by Fourier difference while the others were calculated. The positions of all the H atoms except H 4 and H 5 were refined using the riding model method. PLATON94 (Spek, 1990) was used for geometric analysis of the structure. Most machine calculations were conducted on an IBM RS6000.

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994). Cell refinement: CAD-4 EXPRESS. Data reduction: NONIUS (Baudoux \& Evrard, 1993). Program(s) used to solve structure: SHELXS86 (Sheldrick, 1990). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: ORTEP (Johnson, 1965). Software used to prepare material for publication: PLATON94 (Spek, 1990).

JW thanks the National Fund for Scientific Research (FNRS Belgium) for his Senior Research Assistant position.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: SX1017). Services for accessing these data are described at the back of the journal.

References

Aleman, C., Brillas, E., Davies, A., Fajari, L., Giro, D., Julia, L., Perez, J. \& Rius, J. (1993). J. Org. Chem. 58, 3091-3099.
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
Armes, S. P., Chaloner, P. A., Hitchcock P. B. \& Simmons, M. R. (1994). Acta Cryst. C50, 1945-1947.

Baudoux, G. \& Evrard, G. (1993). Nonius. Program for Data Reduction. Facultes Universitaires N.-D. de la Paix, Namur, Belgium.
Bien, S., Kapon, M., Gronowitz, S. \& Hornfeldt, A.-B. (1989). Chem. Scr. 29, 221-227.
Bondi, A. (1964). J. Phys. Chem. 68, 441-451.
Chaloner, P., Gunatunga, S. \& Hitchcock, P. (1994). Acta Cryst. C50, 1941-1942.
Creuven, I., Evrard, C., Olivier, A., Evrard, G., van Aerschot, A., Wigerinck, P., Herdewijn, P. \& Durant, F. (1996). Antivir. Res. 30, 63-74.
Enraf-Nonius (1994). CAD-4 EXPRESS. Version 5.1/1.2. EnrafNonius, Delft, The Netherlands.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Herrema, J., Wildeman, J., van Bolhuis, F. \& Hadziioannou, G. (1994). Acta Cryst. C50, 1112-1114.
Hotta, S. \& Waragai, K. (1991). J. Mater. Chem. 1, 835-841.
Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
Liao, J.-H., Benz, M., LeGoff, E. \& Kanatzidis, M. (1994). Adv. Mater. 6, 135-142.
Luyten, I., Jie, L., van Aerschot, A., Pannecouque, C., Wigerinck, P., Rozenski, J., Hendrix, C., Wang, C., Wiebe, L., Balzarini, J., De Clercq, E. \& Herdewijn, P. (1995). Antivir. Chem. Chemother. 6, 262-270.
Olivier, A., Creuven, I., Evrard, C., Evrard, G., Dory, M., van Aerschot, A., Wigerinck, P., Herdewijn, P. \& Durant, F. (1994). Antivir. Res. 24, 289-304.
Pelletier, M. \& Brisse, F. (1994). Acta Cryst. C50, 1942-1945.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.

Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Spek, A. L. (1990). Acta Cryst. A46, C-34.
Visser, G., Heeres, G., Wolters, J. \& Vos, A. (1968). Acta Cryst. B24, 467-473.

Acta Cryst. (1997). C53, 895-897

2-Oxazolidinone

Johan Wouters, Frederic Ooms and Francois Durant

Laboratoire de Chimie Moléculaire Structurale, Facultés
Notre-Dame de la Paix, 61 Rue de Bruxelles, B-5000 Namur,
Belgium. E-mail:wouters@scf.fundp.ac.be
(Received 13 August 1996; accepted 6 March 1997)

Abstract

Redetermination of the crystal structure of the title compound, $\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{NO}_{2}$, leads to a precise geometry for this molecule that is compared with the conformation of several aryl-substituted oxazolidinones. Molecular cohesion is stabilized by hydrogen bonds between the amine and carbonyl groups. The coplanar approach of the NH group can be rationalized in terms of the $a b$ initio calculated molecular electrostatic potential generated by the $\mathrm{C}=\mathrm{O}$ group.

Comment

As a part of our interest in the structural study of aryl oxazolidinones (Moureau et al., 1992, 1994, 1995; Wouters et al., 1993, 1994; Wouters, Evrard \& Durant, 1994; Wouters, Perpete, Norberg, Evrard \& Durant, 1994) we redetermined the structure of 2-oxazolidinone ($R_{1}=0.039$), (I), previously reported in the literature ($R_{1}=0.132$; Turley, 1972).

(I)

The molecular structure with the atom-numbering scheme is illustrated as an ORTEPII (Johnson, 1976) plot in Fig. 1. Bond distances and angles are close to those previously reported for the title compound but are determined with more precision. The $\mathrm{N}-\mathrm{Cl}$ and $\mathrm{N}-\mathrm{C} 3$ bonds [1.441 (2) and 1.326 (2) \AA, respectively] are slightly shorter than corresponding bonds in γ lactams $\left[\mathrm{C}^{*}-\mathrm{NH}-\mathrm{C}=\mathrm{O}: \mathrm{C}_{s p^{3}}-\mathrm{N}(3)=1.457\right.$ and $\mathrm{C}_{s p^{2}}-\mathrm{N}(3)=1.331 \AA$ according to Allen et al. (1987)]. The C3-O2 bond length [1.219 (2) \AA] is slightly longer than a $\mathrm{C}=\mathrm{O}$ double bond $(\mathrm{C}=0: 1.196 \AA$ in esters

